
C10552: Intro to
Computation

Lecture 1
Jul 10, 2016

Welcome!

C10552: Intro to Computation

Weekly lectures 1pm

HW: assigned weekly, optional, somewhat open-ended

Submit to oceliker@mit.edu with subject [10552HW] for
feedback

mailto:oceliker@mit.edu

Computers

 1. A person who makes calculations or computations; a calculator, a

reckoner; spec. a person employed to make calculations in an

observatory, in surveying, etc. Now chiefly hist.

from the Oxford English Dictionary

Computers

 1. A person who makes calculations or computations; a calculator, a

reckoner; spec. a person employed to make calculations in an

observatory, in surveying, etc. Now chiefly hist.

3. An electronic device (or system of devices) which is used to store,

manipulate, and communicate information, perform complex

calculations, ... and is capable of receiving information (data) and of

processing it in accordance with variable procedural instructions

(programs or software)...

from the Oxford English Dictionary

Computers

 1. A person who makes calculations or computations; a calculator, a

reckoner; spec. a person employed to make calculations in an

observatory, in surveying, etc. Now chiefly hist.

3. An electronic device (or system of devices) which is used to store,

manipulate, and communicate information, perform complex

calculations, ... and is capable of receiving information (data) and of

processing it in accordance with variable procedural instructions

(programs or software)...

from the Oxford English Dictionary

Computers

 1. A person who makes calculations or computations; a calculator, a

reckoner; spec. a person employed to make calculations in an

observatory, in surveying, etc. Now chiefly hist.

3. An electronic device (or system of devices) which is used to store,

manipulate, and communicate information, perform complex

calculations, ... and is capable of receiving information (data) and of

processing it in accordance with variable procedural instructions

(programs or software)...

from the Oxford English Dictionary

Variable procedural instructions

- aka “programs” or “scripts” or “code”
- A set of sequential commands to the computer

Let a = 5, b = 4, c = 2.
Compute a * b, call this d.
Compute d * c, call this e.
Display e on the screen.

Variable procedural instructions

- aka “programs” or “scripts” or “code”
- A set of sequential commands to the computer

Let a = 5, b = 4, c = 2. a = 5; b = 4; c = 2
Compute a * b, call this d. d = a * b
Compute d * c, call this e. e = d * c
Display e on the screen. print e

Why do we like computers?

- … because they compute! :)
- (really, really fast)

a = 5; b = 4; c = 2
d = a * b
e = d * c
print e

Why do we like computers?

- … because they compute! :)
- (really, really fast)

a = 5582; b = 41105; c = 24867221
d = a * b
e = d * c
print e

Why do we like computers?

https://research.googleblog.com/2014/11/a-picture-is-worth-thousand-coherent.html

Coding in Python: the very basics

Before we begin...

- pay attention to syntax -- computers are picky!
- pay attention to meaning -- computers are dumb!
- don’t be afraid to run the code you write, even though

you think it will fail -- errors are great ways of learning
- remember that you are awesome
- have fun!

Coding in Python: the very basics

The Console

- Also called “shell”, “prompt”, etc.
- “Realtime” coding
- Generally not used for serious computation

Orhans-MBP:~ orhan$ python
Python 2.7.11 |Anaconda 4.0.0 (x86_64)| (default, Dec 6 2015, 18:57:58)
[GCC 4.2.1 (Apple Inc. build 5577)] on darwin
Type "help", "copyright", "credits" or "license" for more information.
>>>

Coding in Python: the very basics

Mathematical operations

- Usually work as expected

>>> 4 + 2
6
>>> 6 * 10
60
>>> 1 - 3
-2
>>> 10 ** 2
100

Power operator: 102

Coding in Python: the very basics

Mathematical operations

- You can use % for modulo operation

>>> 5 % 2
1
>>> 10 % 3
1
>>> 1094328971 % 4
3

Coding in Python: the very basics

Mathematical operations

- The equal sign (=) works differently!

>>>> 4 + 2 = 6
 File "<stdin>", line 1
SyntaxError: can't assign to operator

>>> 6 = 6
 File "<stdin>", line 1
SyntaxError: can't assign to literal

what

Coding in Python: the very basics

Mathematical operations

- The equal sign (=) works differently!

>>>> 4 + 2 = 6
 File "<stdin>", line 1
SyntaxError: can't assign to operator

>>> 6 = 6
 File "<stdin>", line 1
SyntaxError: can't assign to literal

what

Coding in Python: the very basics

Mathematical operations

- The equal sign (=) is an assignment operator
- “Assign <value of right side> to <value of left side>”
- Right side is always unchanged!

>>> a = 5
>>> b = 10
>>> a * b
50

Coding in Python: the very basics

Mathematical operations

- The equal sign (=) is an assignment operator
- “Assign <value of right side> to <value of left side>”
- Right side is always unchanged!

>>> a = 5 value of a is now 5
>>> b = 10 value of b is now 10
>>> a * b
50

Coding in Python: the very basics

Assignment operator allows symbolic math

- We can assign values to symbols like “a” and “b”
- We can also assign these symbols to each other

>>> a = 5 value of a is now 5
>>> b = 10 value of b is now 10
>>> c = b value of c is now value of b, which is…?
>>> c
10

Coding in Python: the very basics

More on symbols

- You have to define a symbol before using it...
- ... otherwise Python gently warns you

>>> a * b
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
NameError: name 'a' is not defined

Coding in Python: the very basics

More on symbols

- “Symbols” are more generally known as “variables”
- They can be named any way you like -- good naming is

important!
>>> a = 5
>>> b = 9
>>> c = 16
>>> d = (a + b + c) / 3
>>> d
10

Coding in Python: the very basics

More on variables

- “Symbols” are more generally known as “variables”
- They can be named any way you like -- good naming is

important!
>>> a = 5
>>> b = 9
>>> c = 16
>>> d = (a + b + c) / 3
>>> d
10

Coding in Python: the very basics

More on variables

- “Symbols” are more generally known as “variables”
- They can be named any way you like -- good naming is

important!
>>> a = 5
>>> b = 9
>>> c = 16
>>> d = (a + b + c) / 3
>>> d
10

Quick note: you can force order of
operations, just like you do in your
math class, by using parentheses

Coding in Python: the very basics

More on variables

- “Symbols” are more generally known as “variables”
- They can be named any way you like -- good naming is

important!
>>> age_joe = 5
>>> age_mary = 9
>>> age_lisa = 16
>>> average_age = (age_joe + age_mary + age_lisa) / 3
>>> average_age
10

Coding in Python: the very basics

More on variables

- You can update variables based on their previous values
- Right-hand side is calculated before assigning

>>> my_money = 100
>>> my_money = my_money + 5
>>> my_money
105

Coding in Python: the very basics

More on variables

- You can update variables based on their previous values
- Right-hand side is calculated before assigning

>>> my_money = 1000000
>>> my_money = my_money * 1.5
>>> my_money
1500000

Coding in Python: the very basics

Printing

- In programming, “print” usually means “display on
screen”

- This may seem redundant for now, but it will make sense
when we move on to writing longer programs

>>> a = 5; b = 10; c = 2
>>> print a * b * c
100
>>> print "hello"
hello

What is the final value of b? (printed results not shown)

>>> a = 10
>>> b = 2
>>> c = 59
>>> a * b
>>> b * c
>>> a = b
>>> b = c * a
>>> c = c * a
>>> c = c * c
>>> b = a * a

Exercise

What is the final value of b? (printed results not shown)

>>> a = 10
>>> b = 2
>>> c = 59
>>> a * b
>>> b * c
>>> a = b
>>> b = c * a
>>> c = c * a
>>> c = c * c
>>> b = a * a
>>> b
4

Exercise

What is the final value of b? (printed results not shown)

>>> a = 10 a is 10 b is undef. c is undef.
>>> b = 2 a is 10 b is 2 c is undef.
>>> c = 59 a is 10 b is 2 c is 59
>>> a * b a is 10 b is 2 c is 59
>>> b * c a is 10 b is 2 c is 59
>>> a = b a is 2 b is 2 c is 59
>>> b = c * a a is 2 b is 118 c is 59
>>> c = c * a a is 2 b is 118 c is 118
>>> c = c * c a is 2 b is 118 c is 13924
>>> b = a * a a is 2 b is 4 c is 13924
>>> b
4

Exercise

What is the final value of b? (printed results not shown)

>>> a = 10 a is 10 b is undef. c is undef.
>>> b = 2 a is 10 b is 2 c is undef.
>>> c = 59 a is 10 b is 2 c is 59
>>> a * b a is 10 b is 2 c is 59
>>> b * c a is 10 b is 2 c is 59
>>> a = b a is 2 b is 2 c is 59
>>> b = c * a a is 2 b is 118 c is 59
>>> c = c * a a is 2 b is 118 c is 118
>>> c = c * c a is 2 b is 118 c is 13924
>>> b = a * a a is 2 b is 4 c is 13924
>>> b
4

Exercise

- Loops allow you to repeat a set of instructions easily

>>> a = 0
>>> for i in range(10): repeat 10 times
... a = a + 1
...
>>> a
10

Loops

- Loops allow you to repeat a set of instructions easily

>>> for i in range(6): repeat 6 times
... print “work”
...
work
work
work
work
work
work

Loops

- Repeated instructions are specified by indentation

>>> for i in range(6): repeat 6 times
... print “work”
...
work
work
work
work
work
work

Loops

Traditionally 4 spaces

- Variable i keeps track of iteration number

>>> for i in range(6): repeat 6 times
... print i
...
0
1
2
3
4
5

Loops

- You can nest loops
>>> for i in range(2):
... print "this is the first loop"
... for j in range(2):
... print "this is the second loop"
...

Loops

- You can nest loops
>>> for i in range(2):
... print "this is the first loop"
... for j in range(2):
... print "this is the second loop"
...
this is the first loop
this is the second loop
this is the second loop
this is the first loop
this is the second loop
this is the second loop

Loops

- You can nest loops
>>> for i in range(2):
... print "this is the first loop"
... for j in range(2):
... print "this is the second loop"
...
this is the first loop
this is the second loop
this is the second loop
this is the first loop
this is the second loop
this is the second loop

Loops

run by second loop

run by first loop

- You can nest loops
>>> for i in range(2):
... print "this is the first loop"
... for j in range(2):
... print "this is the second loop"
...
this is the first loop
this is the second loop
this is the second loop
this is the first loop
this is the second loop
this is the second loop

Loops

run by second loop
executes 2x2 times

run by first loop
executes 2 times

- A way of introducing logic into your code

>>> if 6 > 3:
... print "Hi!"
...
Hi!
>>> if 3 > 6:
... print "Hello!"
...
>>>

Conditionals
“if you’re happy and you know it, …”

- A way of introducing logic into your code

>>> if 6 > 3:
... print "Hi!"
...
Hi!
>>> if 3 > 6:
... print "Hello!"
...
>>>

Conditionals

printed

NOT printed

“if you’re happy and you know it, …”

- A way of introducing logic into your code

>>> if 6 > 3:
... print "Hi!"
...
Hi!
>>> if 3 > 6:
... print "Hello!"
...
>>>

Conditionals

printed

NOT printed

Same indentation rules apply

“if you’re happy and you know it, …”

- There is a shorter way of doing this.

>>> if 6 > 3: if 6 > 3:
... print "Hi!" print “Hi!”
... else:
Hi! print “Hello!”
>>> if 3 > 6:
... print "Hello!"
...
>>>

Conditionals
this only runs if this is not true“if you’re happy and you know it, …”

>>> current_temp = 75
>>> if current_temp > 80:
... print "It's pretty hot out there!"
... elif current_temp > 70:
... print "It's pretty nice now."
... elif current_temp > 60:
... print "It's still acceptable, I guess?"
... else:
... print "It's kind of cold out there..."
...
It’s pretty nice now.

Conditionals: Example
“if you’re happy and you know it, …”

What does the following piece of code do? (No need to write
the output.)

>>> for i in range(100):
... if i % 2 is 0:
... print "red"
... if i % 2 is 1:
... print "blue"
...

Exercise

What does the following piece of code do? (No need to write
the output.)

>>> for i in range(100):
... if i % 2 is 0:
... print "red"
... if i % 2 is 1:
... print "blue"
...
red
blue
red
blue
red
... and so on

Exercise

We’ll implement a programming interview classic: FizzBuzz.

For each number from 0 through 99, print ONLY ONE of the
following on screen:

- “Fizz” if the number is divisible by 3,
- “Buzz” if the number is divisible by 5,
- “FizzBuzz” if the number is divisible by 15,
- the number itself otherwise.

Live coding!

We’re done!
See you next week!

